10CV82

Eighth Semester B.E. Degree Examination, Jan./Feb. 2021 Design and Drawing of Steel Structures

Time: 4 hrs

Note:1. Answer any ONE question each from PART-A and PART-B.
2. Use of IS 800-2007, steel tables and SP6(1) are permitted.

PART - A

1 a. A cross beam ISLB $350 @ 485.6 \mathrm{~N} / \mathrm{m}$ is connected to a main beam ISMB $500 @ 852.5$ N / m, top of the flanges are at the same level. The framed connection has the following details :
i) Connecting cleat angles 2 ISA $150 \times 115 \times 10 @ 200 \mathrm{~N} / \mathrm{m}$.
ii) The connection between the cleat angle of length 115 mm and web of the cross - section is connected by 5 mm fillet weld. Depth of weld is 180 mm .
iii) The connection between the cleat angle of length 150 mm and web of the main beam is connected by 8 mm fillet weld. Depth of weld is 250 mm .
iv) Clearance between cross beam and web of the main beam is 06 mm .

Draw to a suitable scale i) Front view and ii) Side view.
(14 Marks)
b. Draw to a suitable scale beam to column stiffened seat connections.
i) Front view showing C/s of beam.
ii) Side view showing elevation of beam for the following details

Column - ISHB $400 @ 806.4$ N/m.
Beam - ISMB $400 @ 604.3 \mathrm{~N} / \mathrm{m}$
Seat angle - ISA $100 \times 100 \times 10 \mathrm{~mm}$
Cleat angle - ISA $90 \times 90 \times 8 \mathrm{~mm}$.
Pair of stiffeners -2 , ISA $90 \times 90 \times 8,6-20 \mathrm{~mm}$ bolts for stiffeners to column in two rows, two -20 mm bolts for remaining connection.
(16 Marks)
2 a. A column splice is provided between upper storey column ISHB $200 @ 366 \mathrm{~N} / \mathrm{m}$ and lower storey column ISHB $250 @ 500 \mathrm{~N} / \mathrm{m}$. The columns are co - axial. At the junction between face of columns, a base plate of 40 mm thickness is provided. Four numbers of web cleat angles ISA $100 \times 100 \times 8 \mathrm{~mm}$ are used to connect web of column with base plate using 2 bolts along each leg of angles. Flange splice plate of 10 mm thick is provided with suitable filler plate. 6 bolts are provided in 2 vertical rows at each flange of column for connection. Two extra bolts are provided at each face up upper column due to filler plate. All bolts are 20 mm black bolts. Adopt pitch of 50 mm and 35 mm edge distance for bolts.
Draw to a suitable scale : i) Elevation of column splice ii) Side view.
($\mathbf{1 5}$ Marks)
b. Two channels ISMC $400 @ 494 \mathrm{~N} / \mathrm{m}$ placed back to back with a spacing 250 mm . The channels are supported on a slab base having $700 \times 700 \times 70 \mathrm{~mm}$ size. The side angles are $100 \times 100 \times 8 \mathrm{~mm}$ of 450 mm length and are connected by suitable bolts of size 20 mm . Base plate is connected to concrete pedestal $2.2 \times 2.2 \times 1.0 \mathrm{~m}$ size using 4 anchor bolts of diameter 20 mm having 300 mm length.
Use web cleat angles to the channels $-75 \times 75 \times 8 \mathrm{~mm}$ with 5 mm weld all around.
Draw to a suitable scale the following :
i) Sectional Elevation.
ii) Plan of slab base with all details.

10CV82

PART - B

3 The fink roof truss for an industrial building has the following details (Fig. Q3).
Span $=10 \mathrm{~m}$, Rise $=2.5 \mathrm{~m}$, Bearing $=300 \mathrm{~mm}$, Slope $\theta=26.6^{\circ}$.
Panel width $\mathrm{AD}=\mathrm{DE}=\mathrm{EF}=\mathrm{FC}=1.4 \mathrm{~m}$.

Fig. Q3

Design the members of the joint C and A completely. Also, design the sliding base at A consisting of shoe angles, base plate and bearing plate. The forces under service condition are Reaction at $\mathrm{A}=20 \mathrm{KN}$
Force in $\mathrm{CF}=\mathrm{CG}=36 \mathrm{KN}$. Compression and 22 KN tension.
Force in $\mathrm{CN}=\mathrm{CO}=20 \mathrm{KN}$. Compression and 15 KN tension.
Force in $\mathrm{AD}=67 \mathrm{KN}$ (Compression).
Force in $\mathrm{AM}=60 \mathrm{KN}$ (Tension).
Use suitable diameter bolts for all connections. Also, design the anchor bolts for a pull of 20 KN. Draw to a suitable scale.
a. The Elevation of roof truss greater than half span.
b. Elevation of joint C to a larger scale.
c. Elevation and plan details of sliding joint at A.
(30 Marks)
4 A simply supported welded plate girder for an effective span of 30 m and a aud ℓ of $30 \mathrm{KN} / \mathrm{m}$ and two concentrated load of 150 KN each acting at 10 m from both ends. It is fully restrained against lateral buckling throughout the span. Design the central section using thin web with $\mathrm{K}=100$ and end bearing stiffener.
Also design the welded connection between flange and web. Take $f_{y}=250 \mathrm{MPa}, \mathrm{f}_{\mathrm{u}}=415 \mathrm{MPa}$ and ultimate stress of weld $=410 \mathrm{MPa}$. Also design curtailment of plate.
(40 Marks)
Draw to a suitable scale :
a. Elevation for full span with discontinuous line.
(10 Marks)
b. CTs at support and mid span.
c. Plan for full span with discontinuous line.

